Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm
نویسندگان
چکیده
This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing's speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.
منابع مشابه
Fan Improved Algorithm of BP Neural Network Fault Diagnosis Research
According to the structure of the BP neural network and the algorithm, choose three methods of BP neural network algorithm was improved, through analysis and comparison, computing speed is faster, more accurate judgment Levenberg Marquardt algorithm as the improved algorithm of optimal; Using the algorithm to the established BP neural network for training analysis; Then use the Matlab software,...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملFault Detection and Isolation Based on Neural Networks Case Study: Steam Turbine
The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network (ANN). The model of novel fault diagnosis system by using ANN are built and ...
متن کاملTraining recurrent network with block-diagonal approximated Levenberg-Marquardt algorithm
In this paper, we propose the block-diagonal matrix to approximate the Hessian matrix in the Levenberg Mar-quardt method in the training of neural networks. Two weight updating strategies, namely asynchronous and synchronous updating methods were investigated. Asyn-chronous method updates weights of one block at a time while synchronous method updates all weights at the same time. Variations of...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کامل